END SEMESTRAL EXAMINATION TOPOLOGY MMATH FIRST YEAR 2021-2022

Time 3 hours Max. Score 60

Answer all questions.

- (1) Let (X, τ) be a topological space, with τ induced by a metric d.
 (a) Show that d : X × X → ℝ is continuous.
 (b) Show that if τ' is another topology on X, such that d : X × X → ℝ is continuous with respect to τ', then τ' is finer than τ. (4+6)
- (2) Let $K = \{1/n, n = 1, 2, ...\} \subset \mathbb{R}$. Let \mathcal{B} be the collection of all open intervals (a, b), $a, b \in \mathbb{R}$ along with all sets of the form (a, b) K. Let \mathbb{R}_K denote the set of real numbers with the topology generated by the collection \mathcal{B} .
 - (a) Is [0,1] a compact subspace of \mathbb{R}_K ?
 - (b) Is \mathbb{R}_K path-connected?
 - Let Y be the quotient space obtained from \mathbb{R}_K by identifying the set K to a point. Let $p : \mathbb{R}_K \to Y$ be the quotient map.
 - (c) Does Y satisfy the T_1 axiom?
 - (d) Is Y Hausdorff?

(e) Show that the map $p \times p : \mathbb{R}_K \times \mathbb{R}_K \to Y \times Y$ is not a quotient map. (4×5)

(3) (a) Show that the space $X = [0, 1]^{\omega}$ with the uniform topology is not limit point compact.

(b) Let (X,d) be a metric space. Let $f:X\to X$ be a function satisfying the condition

$$d(f(x), f(y)) = d(x, y)$$

for all $x, y \in X$. Show that if X is compact, then f is a homeomorphism. (5+10)

(4) Let X be a non-compact locally compact Hausdorff space, and let Y be a Hausdorff space. Let \tilde{X} denote the one-point compactification of X and let $\phi : X \to Y$ be a continuous map. Show that the following are equivalent:

(i) There exists a continuous map $\phi: X \to Y$ with $\phi|_X = \phi$.

(ii) There exits some point $y \in Y$, such that for every neighbourhood V of p, there exists some compact subset $C_V \subset X$ such that $\phi(X - C_V) \subset V$. (15)